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Aims Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality. SCORE2 may underestimate risk in those
classified as low-to-moderate risk. Polygenic risk scores (PGSs) capture genetic predisposition to CVD and could enhance
traditional models. This study examines whether integrating PGS with SCORE2 improves the prediction of significant sub-
clinical coronary atherosclerosis, defined as coronary artery calcium (CAC) > 100.

Methods
and results

We analysed data from 1420 participants in the Paracelsus 10 000 cohort with available PGS, SCORE2, and CAC measure-
ments. Predictive performance was compared across SCORE2 alone, PGS alone, and their combination, assessed using the
Akaike information criterion and area under the receiver operating characteristic curve (AUC). Decision curve analysis was
performed to evaluate clinical utility. Polygenic risk score improved the prediction of CAC > 100 beyond SCORE2 alone,
increasing the AUC from 0.662 to 0.738 in women and from 0.659 to 0.714 in men, with substantial net reclassification index
(NRI: women 0.649, men 0.450). The addition of PGS, particularly in the highest quintiles, significantly enhanced classification
accuracy for CAC > 100. Decision curve analysis demonstrated that using PGS as a continuous variable provided the highest
net benefit at lower threshold probabilities, supporting its role in refining risk stratification, especially in low-to-moderate
risk populations.

Conclusion Polygenic risk score enhances SCORE2-based prediction of significant CAC. These findings highlight the potential of PGS to
refine cardiovascular risk stratification, supporting targeted screening and prevention. Prospective validation, assessment of
long-term cardiovascular outcomes, and cost-effectiveness analysis are warranted to guide clinical implementation.
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Lay summary Heart disease is one of the leading causes of illness and death worldwide. Doctors use tools like SCORE2 to estimate a per-

son’s risk of developing heart disease, but these tools sometimes miss high-risk individuals, especially younger people and
women. Genetic testing, such as polygenic risk scores (PGSs), can help identify people with a higher inherited risk of heart
disease. In this study, we looked at whether combining PGS with SCORE2 could better predict the presence of significant
coronary artery calcium (CAC > 100), a marker of early heart disease.
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Our results showed that adding PGS to SCORE2 improved the ability to identify individuals at risk, particularly younger
people and women, where traditional methods often fall short. This combined approach could help doctors target prevent-
ive treatments, like cholesterol-lowering medications, to those who need them most. In the future, using genetic information
alongside standard risk scores could lead to more personalized and effective strategies for preventing heart disease.
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Introduction
Cardiovascular disease (CVD) remains a leading cause of morbidity and
mortality worldwide, underscoring the critical need for effective risk
stratification to guide preventive strategies.1 Over recent decades, ad-
vances in myocardial infarction treatment and public health initiatives
have improved outcomes.2 However, traditional risk models such as
SCORE2, though widely implemented, often underestimate risk in cer-
tain populations, particularly younger individuals, women and those at
low-to-moderate risk.3 This limitation highlights the need for novel ap-
proaches to refine risk prediction and optimize prevention.

Advances in genetics have introduced polygenic risk scores (PGSs) as a
promising tool to quantify inherited susceptibility to coronary artery dis-
ease (CAD).4 By aggregating genetic information from millions of common
variants, PGS provides a single metric that captures cumulative genetic
risk.5,6 While the heritable component of CAD has long been recognized
through familial clustering, most CAD cases result from polygenic contri-
butions rather than rare monogenic disorders.7,8 Studies have demon-
strated the predictive value of PGS for CAD and related cardiovascular
events.9–14 However, the clinical application of PGS, particularly in combin-
ation with established risk models, remains underexplored.

Coronary artery calcium (CAC) has emerged as a powerful marker
of subclinical atherosclerosis, offering direct anatomic evidence of cor-
onary plaque burden.15–18 CAC scores, especially CAC > 100, are
strongly associated with future cardiovascular events and have proved
particularly useful for refining risk classification in intermediate-risk in-
dividuals.19 Despite its diagnostic and prognostic value, population-wide
CAC screening is impractical due to cost and logistical barriers.20,21

Identifying individuals most likely to benefit from CAC imaging is there-
fore essential for efficient resource utilization.

The integration of PGS with traditional risk scores, such as SCORE2,
presents a novel opportunity to optimize CAC imaging by identifying

high-risk individuals who may otherwise be overlooked.12,17,22

Polygenic risk score could enhance early detection in younger and
low-to-moderate risk populations while minimizing unnecessary im-
aging in truly low-risk individuals. This approach may enable clinicians
to refine preventive strategies, such as initiating lipid-lowering therapy,
by better aligning interventions with individual risk profiles. Despite this
potential, the extent to which PGS contributes incremental value to
traditional models for predicting significant CAC (e.g. CAC > 100) re-
mains unclear.

This study aimed to address two critical questions in cardiovascular
risk stratification: (i) whether PGS provides an independent and comple-
mentary dimension of risk beyond SCORE2, and (ii) whether combining
PGS with SCORE2 improves the prediction of significant subclinical cor-
onary atherosclerosis, defined as CAC > 100. By addressing these gaps,
this work seeks to refine risk stratification, enhance resource allocation,
and inform more personalized approaches to CVD prevention.

Methods
Study population and design
This retrospective study utilized data from the Paracelsus 10 000 cohort, a
population-based observational study conducted in Salzburg, Austria, and
its surrounding regions. The cohort comprised individuals aged 40–77 years
who underwent baseline assessments between April 2013 and March 2020.
Participants were randomly selected from the Salzburg population using the
Austrian national registry of residents, with ∼56 600 individuals invited via
letter. Of those invited, 10 044 participated in the study.23

Participants were stratified into two sub-cohorts: individuals aged 40–77
years who underwent a basic examination programme and those aged
50–59 years who participated in an extended programme. The extended
programme included CAC scoring and microarray-based genotyping.
Participants in the extended programme were randomly selected from
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the 50–59-year-old subgroup. For the present analysis, individuals with es-
tablished CVD, diabetes mellitus (DM), or chronic kidney disease (CKD)
were excluded to focus on primary prevention. This selection resulted in
the inclusion of 1420 participants with complete data on PGS, Agatston
scores, and SCORE2. To evaluate potential selection bias, the baseline char-
acteristics of these included participants were compared to those of ex-
cluded 50–59-year-old participants who were free of CVD, DM, and
CKD but did not undergo the extended programme. These comparisons,
detailed in a supplemental table (see Supplementary material online,
Table S1), demonstrated that the included participants were representative
of the broader cohort of 50–59-year-olds, supporting the generalizability of
findings.

Risk assessment methods
Cardiovascular risk was assessed using the SCORE2 risk prediction algo-
rithm, which estimates the 10-year risk of fatal and nonfatal cardiovascular
events based on age, sex, smoking status, systolic blood pressure, and
non-HDL-cholesterol. Subclinical coronary atherosclerosis was defined as
an Agatston score > 0, with a threshold of >100 used to identify individuals
with significant subclinical atherosclerosis. Genetic risk was evaluated using
a PGS for CAD, which was calculated from 1 296 172 genetic variants asso-
ciated with CAD risk.24 Genotyping was performed using the Axiom™ 2.0
Precision Medicine Diversity Array Plus Kit (96-format, ThermoFisher
Scientific), following the manufacturer’s instructions. The PGS was normal-
ized to have a mean of 0 and a standard deviation of 1 in the study popula-
tion. Participants were further stratified into quintiles based on PGS
distribution, with the highest quintile representing individuals at the greatest
genetic risk. These quintiles were used for subsequent reclassification ana-
lyses and decision curve analysis (DCA).

Statistical analysis
Descriptive analyses were performed to compare baseline characteristics
across SCORE2 risk categories and PGS quintiles. The distribution of
Agatston scores (0, 1–99, <300, and >300) was evaluated across PGS quin-
tiles within SCORE2 categories to examine the relationship between gen-
etic risk and coronary artery calcium burden. Pearson correlation
coefficients were calculated to assess the relationship between SCORE2
and normalized PGS, while logistic regression models were constructed
to predict significant subclinical atherosclerosis (CAC > 100). These models
included SCORE2 alone, PGS alone, SCORE2 and PGS additively, and
SCORE2 with PGS including an interaction term. Model performance
was assessed using the area under the receiver operating characteristic
curve (AUC) to evaluate discriminatory ability, while the Akaike informa-
tion criterion (AIC) was used to assess model fit. Lower AIC values indi-
cated better model fit, and changes in AUC and AIC were analysed to
quantify the incremental predictive value of adding PGS to SCORE2. Net
reclassification index (NRI) was calculated to assess the extent to which
PGS enhanced risk classification beyond SCORE2, providing additional in-
sight into the clinical relevance of improved prediction, particularly in
women.

Reclassification and decision curve analysis
Reclassification analyses were performed by categorizing participants into
SCORE2 risk groups (low-to-moderate, high, and very high risk) according
to established thresholds. The proportion of individuals with CAC > 100
who were correctly classified as high or very high risk by SCORE2 alone
was compared to those correctly classified when PGS quintiles were
incorporated.

Decision curve analysis was conducted to evaluate the clinical utility of
different predictive models across a range of threshold probabilities. This
method quantified the trade-off between the benefit of identifying true-
positive cases and the harm of false positives, allowing comparisons of
net benefit for models using SCORE2 alone, PGS alone, and their

combination. Separate analyses for men and women were performed to ac-
count for potential sex-specific differences.

Subgroup and outcome analyses
Subgroup analyses further explored the predictive performance and clinical
utility of SCORE2, PGS, and their combination in younger participants (<55
years) and individuals at low-to-moderate risk. Age- and sex-specific ana-
lyses evaluated the relationship between PGS, SCORE2, and the probability
of significant subclinical coronary atherosclerosis. The primary outcome for
all analyses was the presence of significant subclinical atherosclerosis, de-
fined as CAC > 100. All statistical analyses, including data processing, mod-
elling, and visualization, were conducted using R software (version 4.2.2; R
Foundation for Statistical Computing, Vienna, Austria). A two-tailed P-value
of <0.05 was considered statistically significant.

Results
Baseline characteristics according to
SCORE2 risk
Table 1 presents the baseline characteristics of the study population ca-
tegorized by SCORE2 risk levels (low-to-moderate, high, and very high).
BMI, waist circumference, blood pressure, and cholesterol levels progres-
sively increased with higher SCORE2 categories, reflecting worsening
cardiovascular profiles (Supplementary material online, Table S2 shows
sex-specific baseline characteristics). Overall, 10.3% of participants had
significant coronary calcium (CAC > 100), with prevalence increasing
across SCORE2 risk categories—6.0% in the low-to-moderate group,
17.4% in the high-risk group, and 42.5% in the very high-risk group.
These findings underscore the association between elevated SCORE2
values and adverse cardiovascular profiles, as well as their relationship
with significant subclinical atherosclerosis (Figure 1).

Baseline characteristics according to
polygenic risk score quintiles
Table 2 summarizes the baseline characteristics stratified by PRS quintiles.
Higher PRS values were associated with progressive increases in BMI,
waist circumference, cholesterol, and glucose levels. The prevalence of
significant coronary calcium (CAC > 100) increased across PRS quintiles,
from 4.7% in the lowest quintile to 20.6% in the highest, indicating a
greater burden of subclinical atherosclerosis with higher genetic risk.
Figure 1 illustrates the distribution of Agatston scores (0, 1–99, <300,
>300) across PRS quintiles, stratified by sex and SCORE2. The propor-
tion of participants with an Agatston score of 0 decreased progressively
with increasing PRS quintiles, while the proportion with Agatston scores
> 0 increased. These findings suggest that PRS captures genetic aspects
of cardiovascular risk that complement traditional clinical risk scores.

Probability of CAC > 100 by age, polygenic
risk scores, and sex
Figure 2 illustrates the probability of (A) CAC > 0 and (B) CAC > 100
across PGS standard deviations, stratified by sex and age. In both
men and women, the probability of CAC > 100 increased with age,
with higher PGS values associated with steeper risk trajectories. Men
in the highest PGS quintile (+2 SD) reached a 25% probability of
CAC > 100 by age 35. Women followed a similar pattern, albeit with
lower absolute risks, with a 25% probability of CAC > 100 occurring
∼15 years later compared to men. These findings highlight the interplay
between age, genetic risk, and sex in driving significant coronary calcium
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and emphasize the utility of PGS in identifying individuals at elevated
risk, particularly at younger ages.

Complementarity of SCORE2 and
polygenic risk scores
Figure 3 illustrates the sex-specific distribution of PGS quintiles within
cardiovascular risk categories defined by SCORE2 (low-to-moderate,
high, and very high).

Table 3 summarizes the predictive performance of SCORE2, PGS,
and their combination for CAC > 100, stratified by sex. In women,
the AUC for SCORE2 alone was 0.662, improving to 0.738 when com-
bined with PGS, with further incremental improvement to 0.749 when
an interaction term (SCORE2 ∗ PGS) was included. In men, the AUC
for SCORE2 alone was 0.659, improving to 0.714 when combined
with PGS, with no additional improvement (AUC 0.714) when the
interaction term was included. The AIC values also decreased with
the addition of PGS, indicating better model fit (women: AIC 222 to
212 to 210; men: AIC 613 to 588 to 590).

Further analysis of model performance using NRI demonstrated sub-
stantial improvements in risk classification when adding PGS and its
interaction term to SCORE2. The NRI was notably higher for women
(0.649) compared to men (0.450), indicating that the addition of genetic
information provided greater classification improvement for female
participants. These NRI values complement the AUC findings, provid-
ing additional evidence for the enhanced predictive capability of the
combined model, particularly in women.

Table 4 evaluates the ability of SCORE2 and PGS to correctly classify
individuals with CAC > 100. SCORE2 alone correctly classified 59.6%
(87/146) of individuals with CAC > 100. Adding PGS in the fifth quintile
improved classification accuracy to 74.7% (109/146), while including the
fourth and fifth quintiles further increased accuracy to 86.3% (126/146).
Improvements were particularly notable among women, where
SCORE2 alone correctly classified only 15.4% (4/26) of cases, increasing
to 57.7% (15/26) with the addition of the fifth PGS quintile and to 73.1%
(19/26) with the fourth and fifth quintiles. Similar trends were observed
in younger individuals (age < median), with classification accuracy in-
creasing from 30.6% (11/36) with SCORE2 alone to 83.3% (30/36)

Figure 1 Distribution of Agatston scores (0, 1–99, <300, >300) across PGS quintiles, stratified by SCORE2 risk groups and sex. The figure illustrates
the distribution of coronary artery calcium (CAC), as measured by Agatston scores, across PGS quintiles within each SCORE2 risk group
(low-to-moderate, high, and very high), further stratified by sex. Bars represent the proportion of participants with Agatston scores of 0, 1–99,
<300, and >300. Within each SCORE2 risk group, a higher PGS quintile was associated with a greater proportion of participants having significant
coronary calcium (CAC > 100), particularly among men. This visualization highlights the interaction between genetic risk (PGS), clinical risk
(SCORE2), and sex in determining CAC burden.
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when both PGS quintiles were included. These results emphasize the
utility of PGS in improving risk prediction, particularly in subgroups
where SCORE2 alone underperforms.

Figures 4 and 5 present DCA for men and women, comparing strat-
egies for identifying individuals at low-to-moderate SCORE2 risk who
may benefit from additional testing or treatment. In both sexes, the
continuous PGS model provided the highest net benefit at lower
threshold probabilities (<10%), outperforming quintile-based strat-
egies and ‘Test All’ or ‘Test None’ approaches. These findings highlight
the ability of PGS, particularly as a continuous variable, to refine risk
stratification, optimize resource allocation, and minimize unnecessary
testing in low-to-moderate risk populations.

Discussion
Cardiovascular disease remains a leading global cause of morbidity and
mortality, emphasizing the urgent need for refined risk stratification to

guide early prevention strategies.1 Traditional models like SCORE2 are
widely used but often fall short in identifying individuals at high risk for
significant coronary calcium (CAC > 100), particularly in younger adults
and women.25 Our study demonstrates that integrating PGS with
SCORE2 significantly enhances the prediction of CAC > 100, addres-
sing key gaps in cardiovascular prevention and offering actionable in-
sights for clinical practice.

The choice of CAC > 100 as the endpoint in this study aligns with
evidence supporting its clinical relevance. As highlighted by Maron
et al.,19 CAC > 100 represents a threshold for moderate to severe ath-
erosclerotic burden, associated with significantly elevated risk for major
adverse cardiovascular events. Their proposed CAC staging framework
emphasizes this threshold as actionable, guiding the initiation of more
aggressive preventive strategies such as statin therapy and low-dose as-
pirin. Our findings build on this rationale, demonstrating that the inte-
gration of PGS with SCORE2 improves the identification of individuals
with CAC > 100, allowing for more precise and personalized preven-
tion efforts.

Figure 2 The figure shows the predicted probability of (A) any (CAC > 0) and (B) significant coronary calcium (CAC > 100) across PGS quintiles,
stratified by sex and age. Polygenic risk score is represented as a continuous variable, with risk trajectories plotted for men and women at +2 SD and −2
SD of the PGS distribution.

Assessing the role of polygenic risk scores 7



However, as highlighted by a review of highly cited studies on PGS,
the degree to which PGS adds value to traditional risk scores has
been a point of debate.26 Studies evaluating PGS in large cohorts
such as the UK Biobank, the Framingham Heart Study, and the
Multi-Ethnic Study of Atherosclerosis have shown that while PGS is
consistently associated with coronary heart disease risk, the incremen-
tal improvement in metrics like the C statistic or NRI is often modest.26

However, recent real-world evidence, such as the study by Fuat et al.
and Samani et al., demonstrate that integrating PGS into preventive

care settings is likely effective, feasible, and well-accepted by clinicians
and patients, further supporting its potential role in routine
practice.12,14

The complementary nature of PGS and SCORE2 was a striking find-
ing, as these tools showed minimal correlation (r = 0.079), indicating
that they capture distinct aspects of cardiovascular risk. This allowed
the combined model to achieve superior predictive performance
for CAC > 100, with an AUC of 0.753 and an AIC of 1651, outper-
forming either score alone. Further analysis using NRI reinforced these
findings, with the addition of PGS and its interaction term showing sub-
stantial improvement in risk classification, particularly for women
(NRI = 0.649) compared to men (NRI = 0.450). Decision curve ana-
lyses further emphasized the practical implications, showing that the
combined model consistently provided the highest net benefit at
thresholds below 10%. These findings align with prior research demon-
strating the additive value of PGS in traditional models.11,14 By extend-
ing these findings to focus on significant calcium (CAC > 100), our
study highlights the clinical value of targeting this threshold for risk
stratification and intervention.

Our findings particularly underscore the value of PGS in specific sub-
groups, such as younger adults and women, where traditional models
often underperform. Among women with significant CAC (Agatston
> 100), the inclusion of PGS improved classification accuracy from
15.4% to 73.1%. Similarly, in younger individuals (age < median), accur-
acy increased from 30.6% to 83.3% with the addition of PGS. These re-
sults demonstrate the clinical utility of PGS in addressing disparities in
cardiovascular risk assessment, ensuring that these populations are
not overlooked in early prevention efforts. Importantly, the decision

Figure 3 Sex-specific distribution of PGS across cardiovascular risk categories defined by SCORE2. The figure illustrates the distribution of polygenic
risk score (PGS) quintiles within cardiovascular risk categories defined by SCORE2 (low-to-moderate, high, and very high), stratified by sex. The x-axis
represents the SCORE2 risk categories for each gender, while the y-axis shows the percentage of patients (0–100%) within each category. The bars
correspond to the proportion of patients in each PGS quintile (legend provided). This visualization highlights the relationship between traditional car-
diovascular risk factors (SCORE2) and genetic predisposition (PGS), as well as potential sex-specific differences in these associations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Predictive performance of SCORE2, polygenic
risk score, and their combination for CAC > 100,
stratified by sex

Model Women Men

AUC AIC AUC AIC

SCORE2 0662 222 0659 613

PGS 0711 212 0659 623
SCORE2 + PGS 0738 212 0714 588

SCORE2 + PGS + SCORE2 ∗ PGS 0749 210 0714 590

The table presents the area under the receiver operating characteristic curve (AUC)
and Akaike information criterion (AIC) for SCORE2, PGS, and their combined
models. The combination of SCORE2 and PGS yielded the highest predictive
performance (AUC and AIC) in both men and women. Adding an interaction term
(SCORE2 ∗ PGS) provided incremental improvement in women but negligible
improvement in men.

8 B. Wernly et al.



curve analyses highlight the practical benefit of focusing testing on indi-
viduals in the top 20% or 40% of PGS, particularly at lower thresholds
(<10%). By integrating PGS, clinicians can prioritize imaging and inter-
ventions for those most likely to benefit, maximizing net benefit and op-
timizing resource allocation.13

While CAC > 100 remains a robust marker of subclinical athero-
sclerosis and a strong predictor of cardiovascular events, individual
event risk is influenced by additional factors such as smoking, diabetes,
and family history.16,27 Still, CAC staging might improve adherence to
preventive therapies like lipid-lowering treatments, but its success de-
pends on incorporating broader clinical contexts.19 By combining
PGS with existing frameworks, our findings suggest that clinicians can
further refine patient selection for CAC imaging, ensuring that this valu-
able resource is used efficiently and equitably.

Despite these promising findings, our study has limitations. The
cross-sectional design precludes causal inferences or long-term conclu-
sions about the predictive value of PGS for major adverse cardiovascu-
lar events.16,27 Additionally, while focusing on CAC > 100 provides
clinically relevant insights, this threshold may miss individuals with
early subclinical disease who still face elevated risk. The generalizability
of our findings may also be influenced by the characteristics of our
study population, which may not fully represent more diverse popula-
tions or healthcare settings. Prospective studies are needed to validate
these findings and assess their implications for clinical outcomes.
Furthermore, while CAC is a robust measure of subclinical atheroscler-
osis and a strong predictor of cardiovascular events, the risk is modu-
lated by additional factors such as smoking, diabetes, and family
history.16,27 Anatomical burden alone does not fully determine risk,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Classification accuracy of SCORE2 and polygenic risk score for identifying CAC > 100, stratified by sex and age

All
(n = 1420)

Women
(n = 708)

Men
(n = 712)

Age < median
(n = 710)

Age ≥ median

Persons with Agatston > 100 146 26 120 36 110

Correctly classified by SCORE2 as high or very high 87 (59.6%) 4 (15.4%) 83 (69.2%) 11 (30.6%) 76 (69.1%)

Correctly classified by SCORE2 as high or very high
or PGS in fifth quintile

109 (74.7%) 15 (57.7%) 94 (78.3%) 22 (61.1%) 87 (79.1%)

Correctly classified by SCORE2 as high or very high

or PGS in fifth or fourth quintile

126 (86.3%) 19 (73.1%) 107 (89.2%) 30 (83.3%) 96 (87.3%)

This table evaluates the ability of SCORE2 and PGS to correctly classify individuals with significant coronary calcium (CAC > 100). Classification accuracy improved substantially with the
addition of PGS, particularly among women and younger individuals (age < median). Including both the fifth and fourth PGS quintiles further enhanced classification accuracy,
demonstrating the utility of PGS in refining risk prediction.

Figure 4 Decision curve analysis (DCA) for low-to-moderate risk men. This figure compares the net benefit of different strategies for identifying
CAC > 100 in men categorized as low-to-moderate SCORE2 risk. Strategies include the continuous PGS model, PGS quintiles (top 20% and top
40%), and ‘Test All’ or ‘Test None.’ The continuous PGS model consistently demonstrated the highest net benefit at threshold probabilities < 10%,
underscoring its utility in refining risk stratification and optimizing resource allocation for men at low-to-moderate risk.
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as biological factors also contribute significantly to cardiovascular out-
comes. This may explain the limited correlation between SCORE2,
PGS, and CAC, given that CAC primarily quantifies atherosclerosis,
whereas SCORE2 estimates overall cardiovascular risk by incorporat-
ing broader biomarkers, including age, diabetes, and smoking.16,27

Cost-effectiveness analyses will also be essential to determine whether
the benefits of PGS testing justify its expense. Still costs for PGS testing
are relatively low and cost-effectiveness of PGS-guided strategies was
suggested.28,29 One potential advantage of PGS is its ability to estimate
disease risk for a wide range of conditions beyond CVD, making it a ver-
satile tool for personalized medicine.30–33 Finally, addressing challenges
related to patient and clinician acceptance of genetic testing, as well as
ensuring equitable access to PGS across diverse healthcare systems, will
be critical for successful implementation.

In summary, our study provides robust evidence that integrating PGS
with SCORE2 enhances the prediction of significant coronary calcium
(CAC >100), particularly in younger adults and women. By leveraging
genetic, clinical, and anatomical risk factors, this approach represents
a significant advancement in cardiovascular prevention. Decision curve
analyses further emphasize the importance of targeting high-risk sub-
groups to maximize the clinical value and resource efficiency of PGS
testing. Future research should validate these findings in prospective
settings and explore their impact on cardiovascular event prediction
and long-term outcomes. As evidence grows, integrating PGS into rou-
tine care holds the potential to transform cardiovascular prevention,
fostering a future where personalized, precise, and equitable strategies
are the cornerstone of clinical practice.

Supplementary material
Supplementary material is available at European Journal of Preventive
Cardiology.

Author contribution
B.W. and B.P. contributed to the conception or design of the work.
B.W. and P.L. contributed analysis, or interpretation of data for the work.
B.W. wrote the first draft of the manuscript. All authors revised the manu-
script. All gave final approval and agree to be accountable for all aspects of
work ensuring integrity and accuracy.

Conflict of interest: none declared.

Data availability
The data underlying this article will be shared on reasonable request to the
corresponding author.

References
1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age–sex-

specific mortality for 282 causes of death in 195 countries and territories, 1980–
2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet
2018;392:1736–1788.

2. Liew G, Chow C, van Pelt N, Younger J, Jelinek M, Chan J, et al. Cardiac Society of
Australia and New Zealand position statement: coronary artery calcium scoring.
Heart Lung Circ 2017;26:1239–1251.

3. Kronmal RA, McClelland RL, Detrano R, Shea S, Lima JA, Cushman M, et al. Risk factors
for the progression of coronary artery calcification in asymptomatic subjects: results from
the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2007;115:2722–2730.

4. Patel AP, Khera AV. Advances and applications of polygenic scores for coronary artery
disease. Annu Rev Med 2023;74:141–154.

5. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide
polygenic scores for common diseases identify individuals with risk equivalent to mono-
genic mutations. Nat Genet 2018;50:1219–1224.

6. Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, Atri DS, et al. Discovery and sys-
tematic characterization of risk variants and genes for coronary artery disease in over a
million participants. Nat Genet 2022;54:1803–1815.

7. White PD. Genes, the heart and destiny. N Engl J Med 1957;256:965–969.
8. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to

death from coronary heart disease in a study of twins. N Engl J Med 1994;330:
1041–1046.

Figure 5 Decision curve analysis (DCA) for low-to-moderate risk women. This figure compares the net benefit of different strategies for identifying
CAC > 100 in women categorized as low-to-moderate SCORE2 risk. Strategies include the continuous PGS model, PGS quintiles (top 20% and top
40%), and ‘Test All’ or ‘Test None.’ Similar to men, the continuous PGS model provided the highest net benefit at threshold probabilities < 10%, dem-
onstrating its ability to improve risk stratification and reduce unnecessary testing in low-to-moderate risk women.

10 B. Wernly et al.

http://academic.oup.com/eurjpc/article-lookup/doi/10.1093/eurjpc/zwaf206#supplementary-data


9. Muhlestein JB, Knowlton KU, Le VT, Lappe DL, May HT, Min DB, et al. Coronary artery
calcium versus pooled cohort equations score for primary prevention guidance: rando-
mized feasibility trial. JACC Cardiovasc Imaging 2022;15:843–855.

10. Emdin CA, Xia R, Agrawal S, Rana JS, Lloyd-Jones D, Fornage M, et al. Polygenic score
assessed in young adulthood and onset of subclinical atherosclerosis and coronary heart
disease. J Am Coll Cardiol 2022;80:280–282.

11. Li L, Pang S, Starnecker F, Mueller-Myhsok B, Schunkert H. Integration of a polygenic
score into guideline-recommended prediction of cardiovascular disease. Eur Heart J
2024;45:1843–1852.

12. Fuat A, Adlen E, Monane M, Coll R, Groves S, Little E, et al. A polygenic risk score added to
a QRISK®2 cardiovascular disease risk calculator demonstrated robust clinical acceptance
and clinical utility in the primary care setting. Eur J Prev Cardiol 2024;31:716–722.

13. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide
association analysis of coronary artery disease. N Engl J Med 2007;357:443–453.

14. Samani NJ, Beeston E, Greengrass C, Riveros-McKay F, Debiec R, Lawday D, et al.
Polygenic risk score adds to a clinical risk score in the prediction of cardiovascular dis-
ease in a clinical setting. Eur Heart J 2024;45:3152–3160.

15. Arad Y, Spadaro LA, Goodman K, Lledo-Perez A, Sherman S, Lerner G, et al. Predictive
value of electron beam computed tomography of the coronary arteries. 19-month
follow-up of 1173 asymptomatic subjects. Circulation 1996;93:1951–1953.

16. Greenland P, Blaha MJ, Budoff MJ, Erbel R, Watson KE. Coronary calcium score and car-
diovascular risk. J Am Coll Cardiol 2018;72:434–447.

17. Severance LM, Carter H, Contijoch FJ, McVeigh ER. Targeted coronary artery calcium
screening in high-risk younger individuals using consumer genetic screening results. JACC
Cardiovasc Imaging 2021;14:1398–1406.

18. Hoffmann U, Massaro JM, D’Agostino RB Sr, Kathiresan S, Fox CS, O’Donnell CJ.
Cardiovascular event prediction and risk reclassification by coronary, aortic, and valvular
calcification in the Framingham Heart Study. J Am Heart Assoc 2016;5:e003144.

19. Maron DJ, Budoff MJ, Sky JC, Bommer WJ, Epstein SD, Fisher DA, et al. Coronary artery
calcium staging to guide preventive interventions: a proposal and call to action. JACC Adv
2024;3:101287.

20. Patel AA, Fine J, Naghavi M, Budoff MJ. Radiation exposure and coronary artery calcium
scans in the society for heart attack prevention and eradication cohort. Int J Cardiovasc
Imaging 2019;35:179–183.

21. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery cal-
cium area by electron-beam computed tomography and coronary atherosclerotic pla-
que area. A histopathologic correlative study. Circulation 1995;92:2157–2162.

22. Severance LM, Contijoch FJ, Carter H, Fan CC, Seibert TM, Dale AM, et al. Using a gen-
etic risk score to calculate the optimal age for an individual to undergo coronary artery
calcium screening. J Cardiovasc Comput Tomogr 2019;13:203–210.

23. Freya V, Langthaler P, Raphaelis E, Ring-Dimitriou S, Kedenko L, Aigner E, et al.
Paracelsus 10,000: an observational cohort study about the health status of the popu-
lation of Salzburg, Austria. Rationale, objectives and study design. Paracelsus Proc Exp
Med 2023;1:1–17.

24. Patel AP, Wang M, Ruan Y, Koyama S, Clarke SL, Yang X, et al. A multi-ancestry poly-
genic risk score improves risk prediction for coronary artery disease. Nat Med 2023;29:
1793–1803.

25. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk pre-
diction algorithms: new models to estimate 10-year risk of cardiovascular disease in
Europe. Eur Heart J 2021;42:2439–2454.

26. Groenendyk JW, Greenland P, Khan SS. Incremental value of polygenic risk scores in
primary prevention of coronary heart disease: a review. JAMA Intern Med 2022;182:
1082–1088.

27. Greenland P, Glynn PA. Primary prevention for intermediate risk: the more things
change, the more they stay the same. JACC Adv 2024;3:100884.

28. Mujwara D, Kintzle J, Di Domenico P, Busby GB, Bottà G. Cost-effectiveness analysis of
implementing polygenic risk score in a workplace cardiovascular disease prevention
program. Front Public Health 2023;11:1139496.

29. Kiflen M, Le A, Mao S, Lali R, Narula S, Xie F, et al. Cost-effectiveness of polygenic risk
scores to guide statin therapy for cardiovascular disease prevention. Circ Genom Precis
Med 2022;15:e003423.

30. Goldberg SR, Ko LK, Hsu L, Yin H, Kooperberg C, Peters U, et al. Patient perspectives
on personalized risk communication using polygenic risk scores to inform colorectal
cancer screening decisions. AJPM Focus 2025;4:100308.

31. Yiangou K, Mavaddat N, Dennis J, Zanti M, Wang Q, Bolla MK, et al. Polygenic score
distribution differences across European ancestry populations: implications for breast
cancer risk prediction. Breast Cancer Res 2024;26:189.

32. Goss LB, Liu M, Zheng Y, Guo B, Conti DV, Haiman CA, et al. Polygenic risk score and
upgrading in patients with prostate cancer receiving active surveillance. JAMA Oncol
2024;11:168–171.

33. Vernon ST, Brentnall S, Currie DJ, Peng C, Gray MP, Botta G, et al. Health economic
analysis of polygenic risk score use in primary prevention of coronary artery disease—
a system dynamics model. Am J Prev Cardiol 2024;18:100672.

Assessing the role of polygenic risk scores 11


	Assessing the role of polygenic risk scores in cardiovascular risk prediction: a cross-sectional analysis from �the Paracelsus 10 000 cohort
	Introduction
	Methods
	Study population and design
	Risk assessment methods
	Statistical analysis
	Reclassification and decision curve analysis
	Subgroup and outcome analyses

	Results
	Baseline characteristics according to SCORE2 risk
	Baseline characteristics according to polygenic risk score quintiles
	Probability of CAC ≫ 100 by age, polygenic risk scores, and sex
	Complementarity of SCORE2 and polygenic risk scores

	Discussion
	Supplementary material
	Author contribution
	Data availability
	References


